
Getting Results with the
ComponentWorks™
3D Graph
ComponentWorks 3D Graph

January 1999 Edition
Part Number 322245A-01

Worldwide Technical Support and Product Information

http://www.natinst.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 0 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886,
Spain (Madrid) 91 640 0085, Spain (Barcelona) 93 582 0251, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix of this manual.

© Copyright 1999 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
ComponentWorks™ is a trademark of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v ComponentWorks 3D Graph

Contents

About This Manual
Conventions Used in This Manual...xi
Related Documentation..xii

Chapter 1
Introduction to the ComponentWorks 3D Graph

What Is ComponentWorks?...1-1
System Requirements ..1-1
Installing ComponentWorks ..1-2

Installed Files...1-2
About the ComponentWorks Controls ..1-3

Properties, Methods, and Events ...1-3
Object Hierarchy ...1-4
Collection Objects ...1-5

Setting the Properties of an ActiveX Control ..1-5
Using Property Pages ..1-5
Changing Properties Programmatically...1-7
Item Method ..1-8
Working with Control Methods...1-9
Developing Event Handler Routines ...1-9

Learning the Properties, Methods, and Events ..1-9

Chapter 2
Getting Started with ComponentWorks

Explore the ComponentWorks Documentation...2-1
Accessing the Online Reference..2-1

Finding Specific Information ..2-2
Become Familiar with the Examples Structure ...2-2
Develop Your Application...2-2
Seek Information from Additional Sources ...2-5

Contents

ComponentWorks 3D Graph vi © National Instruments Corporation

Chapter 3
Building ComponentWorks Applications with Visual Basic

Overview—Developing Visual Basic Applications.. 3-1
Loading ComponentWorks Controls into the Toolbox ... 3-2
Building the User Interface Using ComponentWorks... 3-2

Using Property Pages .. 3-3
Using Your Program to Edit Properties .. 3-4

Working with Control Methods... 3-5
Developing Control Event Routines.. 3-6
Using the Object Browser to Build Code in Visual Basic... 3-7
Pasting Code into Your Program... 3-9
Adding Code Using Visual Basic Code Completion .. 3-9

Chapter 4
Building ComponentWorks Applications with Visual C++

Overview—Developing Visual C++ Applications.. 4-1
Creating Your Application .. 4-2
Adding ComponentWorks Controls to the Visual C++ Controls Toolbar.................... 4-4
Building the User Interface Using ComponentWorks... 4-5
Programming with the ComponentWorks Controls .. 4-6

Using Properties.. 4-7
Using Methods .. 4-8
Using Events ... 4-9

Chapter 5
Building ComponentWorks Applications with Delphi

Running Delphi Examples... 5-1
Overview—Developing Delphi Applications ... 5-1
Loading ComponentWorks into the Component Palette... 5-2
Building the User Interface ... 5-4

Placing Controls .. 5-4
Using Property Pages .. 5-4

Programming with ComponentWorks... 5-5
Using Your Program to Edit Properties .. 5-6
Using Methods .. 5-7
Using Events ... 5-8

Contents

© National Instruments Corporation vii ComponentWorks 3D Graph

Chapter 6
Using the 3D Graph Control

What is the 3D Graph Control? ...6-1
3D Graph Object Hierarchy...6-2

Graph3D Object...6-2
Plots3D Collection...6-3

Plot3D Object..6-4
Contours Collection...6-4

Contour Object ..6-5
Lights Collection ...6-5

Light Object ..6-5
Axes3D Collection ..6-5
Axis3D Object ...6-6

Ticks3D Object ...6-6
Labels3D Object ...6-7
ValuePairs Collection ...6-7

PlotTemplate Object..6-8
Events ..6-8
Rotating, Panning, and Zooming...6-8

Tutorial: Using the 3D Graph Control ...6-9
Designing the Form ...6-9
Developing the Code ...6-10
Testing Your Program ...6-11

Chapter 7
Debugging Your Application

Error Checking...7-1
Exceptions..7-1
Debugging..7-2

Debug Print..7-2
Breakpoint ...7-3
Watch Window..7-3
Single Step, Step Into, and Step Over ...7-3

Contents

ComponentWorks 3D Graph viii © National Instruments Corporation

Appendix A
Distribution and Redistributable Files

Files ... A-1
Distribution.. A-1

Automatic Installers .. A-1
Manual Installation ... A-2

ComponentWorks Evaluation ... A-3
Run-Time Licenses.. A-3
Troubleshooting... A-4

Appendix B
Technical Support Resources

Glossary

Figures
Figure 1-1. 3D Graph Control Object Hierarchy... 1-4
Figure 1-2. Visual Basic Default Property Sheets ... 1-6
Figure 1-3. ComponentWorks Custom Property Pages... 1-7

Figure 3-1. Visual Basic Property Page... 3-3
Figure 3-2. ComponentWorks Custom Property Pages... 3-4
Figure 3-3. Selecting Events in the Code Window.. 3-6
Figure 3-4. Viewing CWGraph3D in the Object Browser 3-7
Figure 3-5. Browsing CWGraph3D Objects in the Object Browser 3-8
Figure 3-6. Visual Basic 5 Code Completion.. 3-9

Figure 4-1. New Dialog Box ... 4-2
Figure 4-2. MFC AppWizard—Step 1 .. 4-3
Figure 4-3. CWGraph3D Control Property Sheets.. 4-5
Figure 4-4. MFC ClassWizard—Member Variable Tab ... 4-6
Figure 4-5. Viewing Property Functions and Methods in the Workspace Window 4-7
Figure 4-6. Event Handler ... 4-10

Figure 5-1. Delphi Import ActiveX Control Dialog Box .. 5-2
Figure 5-2. Delphi Object Inspector .. 5-4
Figure 5-3. ComponentWorks 3D Graph Control Property Pages 5-5
Figure 5-4. Delphi Object Inspector Events Tab ... 5-8

Contents

© National Instruments Corporation ix ComponentWorks 3D Graph

Figure 6-1. 3D Graph Control Object Hierarchy ...6-2
Figure 6-2. Graph3DExample Form ..6-10

Figure 7-1. Visual Basic Error Message ..7-1

Table
Table 2-1. Chapters about Specific Programming Environments2-3

© National Instruments Corporation xi ComponentWorks 3D Graph

About This Manual

The Getting Results with the ComponentWorks 3D Graph manual contains
the information you need to get started with the 3D graph.

This manual contains step-by-step instructions for building an application
with the ComponentWorks 3D graph. You can modify this sample
application to suit your needs.

To use this manual, you already should be familiar with one of the
supported programming environments and Windows 95/98 or
Windows NT.

Conventions Used in This Manual
The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options»Substitute
Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

bold Bold text denotes the names of menus, menu items, parameters, and dialog
box options.

bold italic Bold italic text denotes a note.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subroutines, device names, functions, operations,
properties and methods, filenames and extensions, and for statements and
comments taken from programs.

About This Manual

ComponentWorks 3D Graph xii © National Instruments Corporation

Related Documentation
The following documents contain information you might find useful as you
read this manual:

• ComponentWorks 3DGraph Online Reference, which is available by
selecting Programs»National Instruments ComponentWorks»
3DGraph»ComponentWorks 3D Graph Reference from the
Windows Start menu.

If you have one of the ComponentWorks development systems, you also
can refer to the following documents for more information about using
ComponentWorks:

• Getting Results with ComponentWorks

• ComponentWorks Online Reference

© National Instruments Corporation 1-1 ComponentWorks 3D Graph

1
Introduction to the
ComponentWorks 3D Graph

This chapter contains an overview of ComponentWorks, lists the
ComponentWorks system requirements, describes how to install the
software, and presents basic information about ComponentWorks
ActiveX controls.

What Is ComponentWorks?
ComponentWorks is a collection of ActiveX controls for developing
applications within any compatible ActiveX control container. ActiveX
controls also are known as OLE (Object Linking and Embedding) controls,
and the two terms can be used interchangeably in this context. The
ComponentWorks 3D Graph control is a tool for 3D visualization.

Use the online reference for specific information about the properties,
methods, and events of the 3D Graph control. You can access this
information by selecting Programs»National Instruments
ComponentWorks»3DGraph»ComponentWorks 3DGraph Reference
from the Windows Start menu.

The ComponentWorks 3D Graph ActiveX control is designed for use in
Visual Basic, a premier ActiveX control container application. Some
ComponentWorks features and utilities have been incorporated with the
Visual Basic user in mind. However, you can use ActiveX controls in other
applications that support them, including Visual C++ and Delphi.

System Requirements
To use the ComponentWorks ActiveX controls, your computer must meet
the following minimum requirements:

• Personal computer using at least a 33 MHz 80486 or higher
microprocessor (National Instruments recommends a 90 MHz
Pentium or higher microprocessor)

• Microsoft Windows 95/98 or Windows NT version 4.0

Chapter 1 Introduction to the ComponentWorks 3D Graph

ComponentWorks 3D Graph 1-2 © National Instruments Corporation

• VGA resolution (or higher) video adapter

• 32-bit ActiveX control container such as Visual Basic 4.0 or greater,
Visual C++ 4.x or greater, or Delphi

• Minimum of 16 MB of memory

• Minimum of 10 MB of free hard disk space

• Microsoft-compatible mouse

Installing ComponentWorks

Note To install ComponentWorks on a Windows NT system, you must be logged in with
Administrator privileges.

1. Use the Windows Explorer to run the SETUP.EXE program.

2. Follow the instructions on the screen. The installer provides different
options for setting the directory in which the ComponentWorks 3D
Graph control is installed and choosing examples for different
programming environments. Use the default settings if you are unsure
about which settings to choose. If necessary, you can run the installer
at a later time to install additional components.

Installed Files
The ComponentWorks 3D Graph setup program installs the following
groups of files on your computer.

• ActiveX controls, documentation, and other associated files

Directory: \Windows\System\ (or \WinNT\System32
for Windows NT)

Files: cw3dgrph.ocx , cw3dgrph.dep , cw3dgrph.hlp ,
cw3dgrph.cnt

• Example programs and applications

Directory: \ComponentWorks\Samples\...

• Tutorials

Directory: \ComponentWorks\Tutorials-3DGraph\...

• Miscellaneous files

Directory: \ComponentWorks\

Note You select the location of the \ComponentWorks\... directory during
installation.

Chapter 1 Introduction to the ComponentWorks 3D Graph

© National Instruments Corporation 1-3 ComponentWorks 3D Graph

About the ComponentWorks Controls
This section presents background information about the ComponentWorks
ActiveX controls. Make sure you understand these concepts before
continuing. You also should refer to your programming environment
documentation for more information about using ActiveX controls in
that environment.

Properties, Methods, and Events
ActiveX controls consist of three different parts—properties, methods,
and events—used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the
current state of the control and affect the display and behavior of the
control. The values of the properties are stored in variables that are part
of the control.

The ComponentWorks 3D Graph control has several properties that enable
you to customize the way data is plotted. For example, you can modify the
plot style and contours.

Methods are functions defined as part of the control. Methods are called
with respect to a particular control and usually have some effect on the
control itself. The operation of most methods is affected by the current
property values of the control.

The 3D Graph control has high-level methods, or functions, that you can
invoke to perform specific operations. For example, use the Plot3DCurve
method to plot three one-dimensional arrays of data in a parametric curve.

Events are notifications generated by a control in response to some
particular occurrence. Events are passed to the control container
application to execute a particular subroutine in the program
(event handler).

The 3D Graph control generates events when particular operations occur.
For example, when you zoom in or out on a plot, the 3D Graph control
generates an event so that your application can respond appropriately.

Note For information about all 3D Graph properties, methods, and events, refer to
the online reference, which you can access by selecting Programs»National
Instruments ComponentWorks»3DGraph»ComponentWorks 3DGraph
Reference from the Windows Start menu.

Chapter 1 Introduction to the ComponentWorks 3D Graph

ComponentWorks 3D Graph 1-4 © National Instruments Corporation

Object Hierarchy
The three parts of an ActiveX control—properties, methods, and
events—are stored in a software object. Because some ActiveX controls
are very complex and contain many properties, ActiveX controls are often
subdivided into different software objects, the sum of which make up the
ActiveX control. Each individual object in a control contains specific parts
(properties) and functionality (methods and events) of the ActiveX control.
The relationships among different objects of a control are maintained in an
object hierarchy. Figure 1-1 illustrates the object hierarchy for the 3D
Graph control.

Figure 1-1. 3D Graph Control Object Hierarchy

At the top of the hierarchy is the actual control itself, Graph3D. This
top-level object contains its own properties, methods, and events. Some of
the top-level object properties are actually references to other objects that

Graph3D Control
Properties such as

Lighting, ProjectionStyle

PlotTemplate
Object

 Property: LineStyle

Axes3D Collection
Property: Count

Plots3D Collection
Property: Count

Lights Collection
Property: Count

Labels3D Object
Properties such as

Opposite, Color

ValuePairs
Collection

Property: Count

ValuePair Object
Properties:

Name, Value

Ticks3D Object
Properties such as
Inside, MajorTicks

Axis3D Object
Properties such as

AutoScale, Maximum

Plot3D Object
Properties such as
LineColor, Contours

Light Object
Properties such as
Color, Attenuation

Contours Collection
Properties such as

Anchor, Interval

Contour Object
Properties such as

LineColor, LineStyle

Chapter 1 Introduction to the ComponentWorks 3D Graph

© National Instruments Corporation 1-5 ComponentWorks 3D Graph

define specific parts of the control. Objects below the top level have their
own methods and properties, and their properties can be references to other
objects. The number of objects in a hierarchy is not limited.

The Graph3D object contains some of its own properties, such as Caption
and ProjectionStyle . It also contains the Plots property, which is a
separate object (Plots3D). The Plots3D object contains individual Plot3D
objects, each describing one plot on the graph. Each Plot3D object has
properties, such as Contours and LineStyle , while the Plots3D
collection object has a property Count that specifies the number of Plot3D
objects in the collection.

Collection Objects
One object can contain several objects of the same type. For example, the
Graph3D object uses several Plot3D objects, each representing one plot on
the graph. The number of objects in the group of objects might not be
defined and might change while the program is running (that is, you can
add or remove plots as part of your program). To handle these groups of
objects more easily, an object called a collection is created.

A collection is an object that contains or stores a varying number of objects
of the same type. You can consider a collection as an array of objects. The
name of a collection object is usually the plural of the name of the object
type contained within the collection. For example, a collection of Plot3D
objects is referred to as Plots3D. In the ComponentWorks software, the
terms object and collection are rarely used, only the type names Plot3D and
Plots3D are listed.

Each collection object contains an Item method that you can use to access
any particular object stored in the collection. Refer to Changing Properties
Programmatically later in this chapter for information about the Item
method and accessing particular objects stored in the collection.

Setting the Properties of an ActiveX Control
You can set the properties of an ActiveX control from its property pages or
from within your program.

Using Property Pages
Property pages are common throughout the Windows 98/95 and Windows
NT interfaces. When you want to change the appearance or options of a
particular object, right click on the object and select Properties. A property

Chapter 1 Introduction to the ComponentWorks 3D Graph

ComponentWorks 3D Graph 1-6 © National Instruments Corporation

page or tabbed dialog box appears with a variety of properties that you can
set for that particular object. You customize ActiveX controls in exactly the
same way. Once you place the control on a form in your programming
environment, right click on the control and select Properties to customize
the appearance and operation of the control.

Use the property pages to set the property values for the 3D Graph ActiveX
control while you are creating your application. The property values you
select at this point represent the state of the control at the beginning of your
application. You can change the property values from within your program
as shown in the next section, Changing Properties Programmatically.

In some programming environments (such as Visual Basic and Delphi), you
have two different property pages. The property page common to the
programming environment is called the default property sheet; it contains
the most basic properties of a control.

Your programming environment assigns default values for some of the
basic properties, such as the control name and the tab order. You must edit
these properties through the default property sheet. Figure 1-2 shows the
Visual Basic default property sheet for the 3D Graph control.

Figure 1-2. Visual Basic Default Property Sheets

Chapter 1 Introduction to the ComponentWorks 3D Graph

© National Instruments Corporation 1-7 ComponentWorks 3D Graph

The second property sheet is called the custom property page. The layout
and functionality of the custom property pages vary for different controls.
Figure 1-3 shows the custom property pages for the 3D Graph control.

Figure 1-3. ComponentWorks Custom Property Pages

Changing Properties Programmatically
You also can set or read the properties of your controls programmatically.
For example, if you want to change the caption on a graph during program
execution, change the Caption property of the 3D Graph control.

Note The exact syntax for reading and writing property values depends on the
programming language. Refer to the appropriate Building ComponentWorks
Applications chapter for information about using ComponentWorks in your
programming environment. Code examples are written in Visual Basic syntax,
which is similar to most implementations.

Each control you create in your program has a name (like a variable name)
which you use to reference the control in your program. You can set the
value of a property on a top-level object with the following syntax.

name.property = new_value

For example, you can change the Caption property of a 3D Graph control
using the following line of code, where CWGraph3D1 is the default name of
the 3D Graph control.

CWGraph3D1.Caption = "Seismic Data, Magnitude vs

Frequency (Hz) vs Time (sec)"

Chapter 1 Introduction to the ComponentWorks 3D Graph

ComponentWorks 3D Graph 1-8 © National Instruments Corporation

To access properties of sub-objects referenced by the top-level object, use
the control name, followed by the name of the sub-object and the property
name. For example, consider the following code for the 3D Graph control.

CWGraph3D1.Plots(1).LineColor = vbRed

In the above code, Plots is a property of the 3D Graph control, which
refers to the collection of Plot3D objects. In this example, the line color of
the first Plot3D object, specified by (1), is being changed. LineColor is
one of several Plot3D properties. vbRed is a color constant defined by
Visual Basic.

You can retrieve the value of control properties from your program in the
same way. For example, you can print the value of the 3D Graph Caption
property.

Print CWGraph3D1.Caption

You can display the line width of the first plot in a Visual Basic text box
with the following code.

Text1.Text = CWGraph3D1.Plots(1).LineWidth

Item Method
To access an object or its properties in a collection, use the Item method
on the collection object. For example, set the line style of the second plot
in the Plots3D collection with the following code.

CWGraph3D1.Plots.Item(2).LineStyle = cwLine3DDash

The term CWGraph3D1.Plots.Item(2) refers to the second Plot3D
object in the Plots3D collection of the Graph3D object. The parameter of
the Item method is an integer representing the (one-based) index of the
object in the collection.

Because the Item method is the most commonly used method on a
collection, it is referred to as the default method. Therefore, some
programming environments do not require you to specify the .Item

method. For example, in Visual Basic

CWGraph3D1.Plots(2).LineStyle = cwLine3DDash

is programmatically equivalent to

CWGraph3D1.Plots.Item(2).LineStyle = cwLine3DDash

Chapter 1 Introduction to the ComponentWorks 3D Graph

© National Instruments Corporation 1-9 ComponentWorks 3D Graph

Working with Control Methods
ActiveX controls and objects have their own methods, or functions, that
you can call from your program. Methods can have parameters that are
passed to the method and return values that pass information back to your
program.

Methods can have required and optional parameters in some programming
environments, such as Visual Basic. You can omit optional parameters if
you want to use their default values. Other programming environments
require all parameters to be passed explicitly.

For example, the Plot3DCurve method has three required parameters that
you must include when you call the method. The required parameters
specify the X, Y, and Z data. The fourth parameter, which is magnitude
data, is optional.

CWGraph3D1.Plot3DCurve xVector, yVector, zVector,

wVector

Depending on your programming environment, parameters might be
enclosed in parentheses. If the function or method is not assigned a return
variable, Visual Basic does not use parentheses to pass parameters.

Developing Event Handler Routines
After configuring your control on a form, you can create event handler
routines in your program to respond to events generated by the control. In
most cases, the event also returns some data to the event handler. You can
use that data in your event handler routine.

To develop the event routine code, most programming environments
generate a skeleton function to handle each event. For information about
generating these function skeletons, refer to the appropriate Building
ComponentWorks Applications chapter.

Learning the Properties, Methods, and Events
The ComponentWorks 3D Graph online reference contains detailed
information about the control and its associated properties, methods, and
events. You can open the online reference from within most programming
environments by clicking on the Help button in the custom property pages,
or you can open it from the Windows Start menu by selecting
Programs»National Instruments ComponentWorks»3DGraph»
ComponentWorks 3DGraph Reference.

© National Instruments Corporation 2-1 ComponentWorks 3D Graph

2
Getting Started with
ComponentWorks

This chapter describes approaches to help you get started using
ComponentWorks, depending on your application needs, your experience
using ActiveX controls in your particular programming environment, and
your specific goals in using ComponentWorks.

Explore the ComponentWorks Documentation
The printed and online manuals contain the information necessary to
learn and use the ComponentWorks 3D Graph control to its full
capabilities. Use the Getting Results with the ComponentWorks 3D Graph
manual to learn how to develop simple applications with the 3D Graph
control. The manual contains information you can use in specific
circumstances, such as debugging particular problems.

After you understand the operation and organization of the control, use the
ComponentWorks 3D Graph Online Reference to obtain information about
specific features of the control.

Accessing the Online Reference
You can open the online reference from the Windows Start
menu (Programs»National Instruments ComponentWorks»
3DGraph»ComponentWorks 3DGraph Reference). The reference
opens to the main contents page. From the contents page, you can browse
the contents of the online reference or search for a particular topic.

Most programming environments support some type of automatic link to
the online reference (help) file from within their environment, often the
<F1> key. Try selecting the control on a form or placing the cursor in code
specific to the control and pressing <F1> to evoke the online reference.

In most environments, the property pages for the ComponentWorks control
include a Help button that provides information about the property pages.

Chapter 2 Getting Started with ComponentWorks

ComponentWorks 3D Graph 2-2 © National Instruments Corporation

Finding Specific Information
To find information about a particular feature of the 3D Graph control,
select the Index tab under the Help Topics page. Enter the name of the
control (CWGraph3D), property, method, or event.

One group of objects that frequently generates questions are the Collection
objects. Search the online reference for Collections and the Item
method for more information. You also can find information about
collection objects in the Collection Objects section of Chapter 1,
Introduction to the ComponentWorks 3D Graph.

Become Familiar with the Examples Structure
The examples installed with the ComponentWorks 3D Graph show you
how to use the 3D Graph in applications. You can use these examples as a
reference to become more familiar with the use of the controls, or you can
build your application by expanding one of the examples.

When you install ComponentWorks, you can install examples for selected
programming environments. The examples are located in the
\ComponentWorks\samples directory, organized by programming
environment (\Visual Basic , \Visual C++, and so on), and grouped in
the 3DGraph folder under each language. Within these directories, the
examples are further subdivided by functionality.

Develop Your Application
Depending on your experience with your programming environment,
ActiveX controls, and ComponentWorks, you can get started using
ComponentWorks in some of the following ways.

Are you new to your particular programming environment?

Spend some time using and programming in your development
environment. Check the documentation that accompanies your
programming environment for getting started information or tutorials,
especially tutorials that describe using ActiveX controls in the
environment. If you have specific questions, search the online
documentation of your development environment. After becoming familiar
with the programming environment, continue with the following steps.

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-3 ComponentWorks 3D Graph

Are you new to using ActiveX controls or do you need to learn how to
use ActiveX controls in a specific programming environment?

Make sure you have read and understand the information about ActiveX
controls in Chapter 1, Introduction to the ComponentWorks 3D Graph, and
the appropriate chapter about your specific programming environment.
Refer to Table 2-1 to find out which chapter you should read for your
specific programming environment.

If you use Borland C++ Builder, most of Chapter 5, Building
ComponentWorks Applications with Delphi, pertains to you. If you use
another programming environment, see the ComponentWorks Support
Web site (www.natinst.com/support) for current information about
particular environments.

Regardless of the programming environment you use, consult its
documentation for information about using ActiveX controls. After
becoming familiar with using ActiveX controls in your environment,
continue with the following steps.

Are you familiar with ActiveX controls but need to learn
ComponentWorks controls, hierarchies, and features?

If you are familiar with using ActiveX controls, including collection
objects and the Item method, read Chapter6, Using the 3D Graph Control,
which provides basic information about the control and describes its
most commonly used properties, methods, and events. This chapter
also offers a tutorial to help you become more familiar with using the
control. The solution to the tutorial is installed with your software
(\ComponentWorks\Tutorials-3DGraph).

Table 2-1. Chapters about Specific Programming Environments

Environment Read This Chapter

Microsoft Visual Basic Chapter 3, Building ComponentWorks
Applications with Visual Basic

Microsoft Visual C++ Chapter 4, Building ComponentWorks
Applications with Visual C++

Borland Delphi Chapter 5, Building ComponentWorks
Applications with Delphi

Chapter 2 Getting Started with ComponentWorks

ComponentWorks 3D Graph 2-4 © National Instruments Corporation

After becoming familiar with the information in this chapter, try building
applications with the ComponentWorks 3D Graph control. You can find
detailed information about all properties, methods, and events in the online
reference.

Do you want to develop applications quickly or modify existing
examples?

If you are familiar with using ActiveX controls, including collections and
the Item method, and have some experience using ComponentWorks or
other National Instruments products, you can get started more quickly by
looking at the examples.

The examples include comments to provide more information about the
steps performed in the example. The examples avoid performing complex
programming tasks specific to one programming environment; instead,
they focus on showing you how to perform operations using the
ComponentWorks 3D Graph control. When developing applications with
ActiveX controls, you do a considerable amount of programming by setting
properties in the property pages. Check the value of the control properties
in the examples because the values greatly affect the operation of the
example program. In some cases, the actual source code used by an
example might not differ from other examples; however, the values of
the properties change the example significantly.

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-5 ComponentWorks 3D Graph

Seek Information from Additional Sources
After working with the ComponentWorks 3D Graph control, you might
need to consult other sources if you have questions. The following sources
can provide you with more specific information.

• ComponentWorks 3D Graph Online Reference—The online reference
includes the complete reference documentation and text of this
manual. If you cannot find a particular topic in the index, choose the
Find tab in the Help Topics page and search the complete text of the
online reference.

• ComponentWorks Support Web Site—The ComponentWorks Support
Web site, as part of the National Instruments Support Web site
(www.natinst.com/support), contains support information,
updated continually. You can find application and support notes and
information about using ComponentWorks in additional programming
environments. The Web site also contains the KnowledgeBase, a
searchable database containing thousands of entries answering
common questions related to the use of ComponentWorks and other
National Instruments products.

© National Instruments Corporation 3-1 ComponentWorks 3D Graph

3
Building ComponentWorks
Applications with Visual Basic

This chapter describes how you can use the ComponentWorks controls
with Visual Basic, including inserting the controls into the Visual Basic
environment, setting their properties, and using their methods and events.

Note The descriptions and figures in this chapter apply specifically to the Visual Basic 5
environment.

Overview—Developing Visual Basic Applications
The following procedure explains how you can start developing Visual
Basic applications with ComponentWorks.

1. Select the type of application you want to build. Select a Standard EXE
for your application type.

2. Load the ComponentWorks controls into the Visual Basic Toolbox.

3. Design the form. A form is a window or area on the screen on which
you place controls and indicators to create the user interface for your
program. The toolbox in Visual Basic contains all of the controls
available for developing the form.

4. After placing each control on the form, configure the properties of the
control using the default and custom property pages.

Each control on the form has associated code (event handler routines)
in your Visual Basic program that automatically executes when the
user operates that control.

5. To create this code, double click on the control while editing your
application and the Visual Basic code editor opens to a default event
handler routine.

Chapter 3 Building ComponentWorks Applications with Visual Basic

ComponentWorks 3D Graph 3-2 © National Instruments Corporation

Loading ComponentWorks Controls into the Toolbox
Before building an application using ComponentWorks controls, you must
add them to the Visual Basic toolbox. Use the following procedure to add
ComponentWorks controls to the project toolbox.

1. In a new Visual Basic project, right click on the toolbox and select
Components.

2. Place a checkmark in the box next to National Instruments CW
3DGraph.

If the ComponentWorks 3D Graph control is not in the list, select
the control file from the \Windows\System directory (or
\WinNT\System32 directory for Windows NT) by pressing
theBrowse button.

If you need to use the ComponentWorks controls in several projects, create
a new default project in Visual Basic 5 to include the controls and serve as
a template.

1. Create a new Standard EXE application in the Visual Basic
environment.

2. Add the ComponentWorks controls to the project toolbox as described
in the preceding procedure.

3. Save the form and project in the \Template\Projects directory
under your Visual Basic directory.

4. Give the form and project a descriptive name, such as CWForm and
CWProject .

After creating this default project, you have a new option, CWProject ,
that includes the ComponentWorks controls in the New Project dialog
by default.

Building the User Interface Using ComponentWorks
After you add the ComponentWorks controls to the Visual Basic toolbox,
use them to create the front panel of your application. To place the controls
on the form, select the corresponding icon in the toolbox and click and drag
the mouse on the form. This step creates the corresponding control. After
you create controls, move and size them by using the mouse. To move a
control, click and hold the mouse on the control and drag the control to the
desired location. To resize a control, select the control and place the mouse
pointer on one of the hot spots on the border of the control. Drag the border
to the desired size.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-3 ComponentWorks 3D Graph

Once ActiveX controls are placed on the form, you can edit their properties
using their property sheets. You can also edit the properties from within the
Visual Basic program at run time.

Using Property Pages
After placing a control on a Visual Basic form, configure the control by
setting its properties in the Visual Basic property pages (see Figure 3-1)
and ComponentWorks custom control property pages (see Figure 3-2).
Visual Basic assigns some default properties, such as the control name
and the tab order. When you create the control, you can edit these stock
properties in the Visual Basic default property sheet. To access this sheet,
select a control and select Properties Window from the View menu, or
press <F4>. To edit a property, highlight the property value on the right
side of the property sheet and type in the new value or select it from a pull
down menu. The most important property in the default property sheet is
Name, which is used to reference the control in the program.

Figure 3-1. Visual Basic Property Page

Chapter 3 Building ComponentWorks Applications with Visual Basic

ComponentWorks 3D Graph 3-4 © National Instruments Corporation

Edit all other properties of an ActiveX control in the custom property
sheets. To open the custom property sheets, right click on the control on the
form and select Properties or select the controls and press <Shift-F4>.

Figure 3-2. ComponentWorks Custom Property Pages

Using Your Program to Edit Properties
You can set and read the properties of your controls programmatically in
Visual Basic. Use the name of the control with the name of the property as
you would with any other variable in Visual Basic. The syntax for setting a
property in Visual Basic is name.property = new value .

For example, you can change the Caption property of a 3D Graph control
using the following line of code, where CWGraph3D1 is the default name of
the 3D Graph control.

CWGraph3D1.Caption = "Seismic Data, Magnitude vs

Frequency (Hz) vs Time (sec)"

To access properties of sub-objects referenced by the top-level object, use
the control name, followed by the name of the sub-object and the property
name. For example, consider the following code for the 3D Graph control.

CWGraph3D1.Plots(1).LineColor = vbRed

In the above code, Plots is a property of the 3D Graph control, which
refers to the collection of Plot3D objects. In this example, the line color of
the first Plot3D object, specified by (1), is being changed. LineColor is
one of several Plot3D properties. vbRed is a color constant defined by
Visual Basic.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-5 ComponentWorks 3D Graph

You can retrieve the value of control properties from your program in the
same way. For example, you can print the value of the 3D Graph Caption
property.

Print CWGraph3D1.Caption

You can display the line width of the first plot in a Visual Basic text box
with the following code.

Text1.Text = CWGraph3D1.Plots(1).LineWidth

Working with Control Methods
Calling the methods of an ActiveX control in Visual Basic is similar to
working with the control properties. To call a method, add the name of the
method after the name of the control (and sub-object if applicable). For
example, you can call the ClearData method on the 3D Graph control.

CWGraph3D1.ClearData

Methods can have required and optional parameters in some programming
environments, such as Visual Basic. You can omit optional parameters if
you want to use their default values. Other programming environments
require all parameters to be passed explicitly.

For example, the Plot3DCurve method has three required parameters that
you must include when you call the method. The required parameters
specify the X, Y, and Z data. The fourth parameter, which is magnitude
data, is optional.

CWGraph3D1.Plot3DCurve xVector, yVector, zVector,

wVector

In Visual Basic if you call a method without assigning a return variable,
any parameters passed to the method are listed after the method name,
separated by commas without parentheses, as in the previous example. If
you assign the return value of a method to a return variable, enclose the
parameters in parentheses.

Chapter 3 Building ComponentWorks Applications with Visual Basic

ComponentWorks 3D Graph 3-6 © National Instruments Corporation

Developing Control Event Routines
After you configure your controls in the forms editor, write Visual Basic
code to respond to events on the controls. The controls generate these
events in response to user interactions with the controls or in response to
some other occurrence in the control. To develop the event handler routine
code for an ActiveX control in Visual Basic, double click on the control to
open the code editor, which automatically generates a default event handler
routine for the control. The event handler routine skeleton includes the
control name, the default event, and any parameters that are passed
to the event handler routine.

The following code is an example of the event routine generated for the
3D Graph control. This event routine (Rotate) is called when a user
rotates the graph.

Private Sub CWGraph3D1_Rotate(NewLatitude As Variant,

NewLongitude As Variant)

End Sub

To generate an event handler for a different event of the same control,
double click the control to generate the default handler, and select the
desired event from the right pull-down menu in the code window, as shown
in the following illustration.

Figure 3-3. Selecting Events in the Code Window

Use the left pull-down menu in the code window to change to another
control without going back to the form window.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-7 ComponentWorks 3D Graph

Using the Object Browser to Build Code in Visual Basic
Visual Basic includes a tool called the Object Browser that you can use to
work with ActiveX controls while creating your program. The Object
Browser displays a detailed list of the available properties, methods, and
events for a particular control. It presents a three-step hierarchical view of
controls or libraries and their properties, methods, functions, and events. To
open the Object Browser, select Object Browser from the View menu, or
press <F2>.

In the Object Browser, use the top left pull-down menu to select a particular
ActiveX control file. You can select any currently loaded control or driver.
The Classes list on the left side of the Object Browser displays a list of
controls, objects, and function classes available in the selected control file
or driver.

Figure 3-4 shows CW3DGraphLib selected in the Object Browser. The
Classes list shows all associated 3D Graph object types. Each time you
select an item from the Classes list in the Object Browser, the Members list
on the right side displays the properties, methods, and events for the
selected object or class.

Figure 3-4. Viewing CWGraph3D in the Object Browser

When you select an item in the Members list, the prototype and description
of the selected property, method, or function are displayed at the bottom of
the Object Browser dialog box. In Figure 3-4, the CWGraph3D control is
selected from the Classes list. For this control, the Plot3DCurve method

Chapter 3 Building ComponentWorks Applications with Visual Basic

ComponentWorks 3D Graph 3-8 © National Instruments Corporation

is selected and the prototype and description of the method appear in the
dialog box. The prototype of a method or function lists all parameters,
required and optional. For the Plot3DCurve method, the first three
parameters are required and the fourth is optional, as indicated by the
square brackets.

When you select a property of a control or object that is an object itself in
the Members list, the description of the property includes a reference to the
object type of the property. For example, Figure 3-5 shows the
CWGraph3D control selected in the Classes list and its Plots property
selected in the Members list.

Figure 3-5. Browsing CWGraph3D Objects in the Object Browser

The Plots object on the CWGraph3D control is a separate object, so the
description at the bottom of the dialog window lists the Plots property as
CWPlots3D. CWPlots3D is the type name of the Plots collection object,
and you can select CWPlots3D in the Classes list to see its properties and
methods. Move from one level of the object hierarchy to the next level
using the Object Browser to explore the structure of different controls.

The question mark (?) button at the top of the Object Browser opens the
help file to a description of the currently selected item. To find more
information about the CWGraph3D object, select the control in the window
and press the ? button.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-9 ComponentWorks 3D Graph

Pasting Code into Your Program
If you open the Object Browser from the Visual Basic code editor, you can
copy the name or prototype of a selected property, method, or function to
the clipboard and then paste it into your program. To perform this task,
select the desired Member item in the Object Browser. Press the Copy to
Clipboard button at the top of the Object Browser or highlight the
prototype at the bottom and press <Ctrl-C> to copy it to the clipboard. Paste
it into your code window by selecting Paste from the Edit menu or pressing
<Ctrl-V>.

Use this method repeatedly to build a more complex reference to a property
of a lower-level object in the object hierarchy. For example, you can create
a reference to

CWGraph3D1.Plots.Item(1).Contours.Item(1).LineStyle

by typing in the name of the control (CWGraph3D1) and then using the
Object Browser to add each section of the property reference.

Adding Code Using Visual Basic Code Completion
Visual Basic 5 supports automatic code completion in the code editor. As
you enter the name of a control, the code editor prompts you with the names
of all appropriate properties and methods. Try placing a control on the form
and then entering its name in the code editor. After typing the name, add a
period as the delimiter to the property or method of the control. As soon as
you type the period, Visual Basic drops down a menu of available
properties and methods, as shown in Figure 3-6.

Figure 3-6. Visual Basic 5 Code Completion

Chapter 3 Building ComponentWorks Applications with Visual Basic

ComponentWorks 3D Graph 3-10 © National Instruments Corporation

You can select from the list of properties and events by scrolling through
the list and selecting one or by typing in the first few letters of the desired
item. Once you have selected the correct item, type the next logical
character such as a period, space, equal sign, or carriage return to enter the
selected item in your code and continue editing the code.

© National Instruments Corporation 4-1 ComponentWorks 3D Graph

4
Building ComponentWorks
Applications with Visual C++

This chapter describes how you can use ComponentWorks with Visual
C++, including inserting the controls into the Visual C++ environment and
creating the necessary wrapper classes. It also shows you how to create an
application compatible with ComponentWorks using the Microsoft
Foundation Classes Application Wizard (MFC AppWizard) and how to
build your program using the ClassWizard with the controls.

Note The descriptions and figures in this chapter apply specifically to the Visual C++ 5
environment.

Overview—Developing Visual C++ Applications
The following procedure explains how you can start developing Visual
C++ applications with ComponentWorks.

1. Create a new workspace or project in Visual C++.

2. To create a project compatible with the ComponentWorks ActiveX
controls, use the Visual C++ MFC AppWizard to create a skeleton
project and program.

3. After building the skeleton project, add the ComponentWorks controls
to the controls toolbar. From the toolbar, you can add the controls to
the application itself.

4. After adding a control to your application, configure its properties
using its property pages.

5. While developing your program code, use the control properties and
methods and create event handlers to process different events
generated by the control.

Create the necessary code for these different operations using the
ClassWizard in the Visual C++ environment.

Chapter 4 Building ComponentWorks Applications with Visual C++

ComponentWorks 3D Graph 4-2 © National Instruments Corporation

Creating Your Application
When developing new applications, use the MFC AppWizard to create new
project workspace so the project is compatible with ActiveX controls. The
MFC AppWizard creates the project skeleton and adds the necessary code
that enables you to add ActiveX controls to your program.

1. Create a new project by selecting New from the File menu. The New
dialog box opens (see Figure 4-1).

Figure 4-1. New Dialog Box

2. On the Projects tab, select the MFC AppWizard (exe) and enter the
project name and the directory.

3. Click on OK to setup your project.

Complete the next series of dialog windows in which the MFC
AppWizard prompts you for different project options. If you are a new
Visual C++ or the MFC AppWizard user, accept the default options
unless otherwise stated in this documentation.

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-3 ComponentWorks 3D Graph

4. In the first step, select the type of application you want to build.
For this example, select a dialog-based application, as shown in
Figure 4-2.

Figure 4-2. MFC AppWizard—Step 1

5. Click on the Next> button to continue.

6. Enable ActiveX controls support. If you have selected a Dialog based
application, step two of the MFC AppWizard enables ActiveX
Controls support by default.

7. Continue selecting desired options through the remainder of the
MFC AppWizard and click Finish.

When you finish the MFC AppWizard, it builds a project and program
skeleton according to the options you specified. The skeleton includes
several classes, resources, and files, all of which can be accessed from
the Visual C++ development environment.

8. Use the Workspace window, which you can select from the View
menu, to see the different components in your project.

Chapter 4 Building ComponentWorks Applications with Visual C++

ComponentWorks 3D Graph 4-4 © National Instruments Corporation

Adding ComponentWorks Controls to the Visual C++
Controls Toolbar

Before building an application using ComponentWorks, you must load the
controls into the Controls toolbar in Visual C++ from the Component
Gallery in the Visual C++ environment. When you load the controls using
the Component Gallery, a set of C++ wrapper classes is generated
automatically in your project. You must have wrapper classes to work with
the ComponentWorks controls.

The Controls toolbar is visible in the Visual C++ environment only when
the Visual C++ dialog editor is active. Use the following procedure to open
the dialog editor.

1. Open the Workspace window by selecting Workspace from the
View menu.

2. Select the Resource View (second tab along the bottom of the
Workspace window).

3. Expand the resource tree and double click on one of the Dialog entries.

4. If necessary, right click on any existing toolbar and enable the
Controls option.

By adding controls to your project, you create the necessary wrapper
classes for the control in your project and add the control to the toolbox.
Use the following procedure to add new controls to the toolbar.

1. Select Project»Add To Project»Components and Controls and, in
the following dialog, double click on Registered ActiveX Controls.

2. Select the ComponentWorks 3DGraph control and click the
Insert button.

3. Click on OK in the following dialog windows.

4. Click Close in the Components and Controls Gallery.

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-5 ComponentWorks 3D Graph

Building the User Interface Using ComponentWorks
After adding the control to the Controls toolbar, use the 3D Graph in the
design of the application user interface. Place the control on the dialog form
using the dialog editor. You can size and move the control in the form to
customize the interface. Use the custom property sheets to configure
control representation on the user interface and control behavior at run
time.

To add a ComponentWorks control to the form, open the dialog editor by
selecting the dialog form from the Resource View of the Workspace
window. If the Controls toolbar is not displayed in the dialog editor, open it
by right clicking on any existing toolbar and enabling the Controls option.
Select the control in the Controls toolbar and click and drag the mouse on
the form to create the control. After placing the control, move and resize it
on the form as needed.

After you add a ComponentWorks control to a dialog form, configure the
default properties of the control by right clicking the control and selecting
Properties to display its custom property sheets. Figure 4-3 shows the 3D
Graph control property pages.

Figure 4-3. CWGraph3D Control Property Sheets

So you can see immediately how different properties affect the control,
a separate window displays a sample copy of the control that reflects the
property changes as you make them in the property sheets.

Chapter 4 Building ComponentWorks Applications with Visual C++

ComponentWorks 3D Graph 4-6 © National Instruments Corporation

Programming with the ComponentWorks Controls
To program with ComponentWorks controls, use the properties, methods,
and events of the controls as defined by the wrapper classes in Visual C++.

Before you can use the properties or methods of a control in your Visual
C++ program, assign a member variable name to the control. This member
variable becomes a variable of the application dialog class in your project.

To create a member variable for a control on the dialog form, right click on
the control and select ClassWizard. In the MFC Class Wizard window,
activate the Member Variables tab, as shown in Figure 4-4.

Select the new control in the Control IDs field and press the Add Variable
button. In the dialog window that appears, complete the member variable
name and press OK . Most member variable names start with m_, and you
should adhere to this convention. After you create the member variable, use
it to access a control from your source code. Figure 4-4 shows the MFC
Class Wizard after a member variable has been added for the 3D Graph
control.

Figure 4-4. MFC ClassWizard—Member Variable Tab

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-7 ComponentWorks 3D Graph

Using Properties
Unlike Visual Basic, you do not read or set the properties of
ComponentWorks controls directly in Visual C++. Instead, the wrapper
class of each control contains functions to read and write the value of each
property. These functions are named starting with either Get or Set
followed by the name of the property. For example, to draw the X-Y grid
plane, use the SetGridXY function of the wrapper class. In the source
code, the function call is preceded by the member variable name of the
control to which it applies.

m_CWGraph3D1.SetGridXY(TRUE);

Note Some values passed to properties need to be of variant type. Convert the value
passed to the property to a variant using COleVariant() .

You can view the names of all property functions (and other functions) for a
given control in the ClassView of the Workspace window. In the Workspace
window, select ClassView and then the control for which you want to view
property functions and methods. Figure 4-5 shows the functions for the
object as listed in the Workspace. These are created automatically when
you add a control to the Controls toolbar in your project.

Figure 4-5. Viewing Property Functions and Methods in the Workspace Window

If you need to access a property of a control which is itself another object,
use the appropriate property function to return the sub-object of the control.
Make a call to access the property of the sub-object. Include the header file
in your program for any objects used.

Chapter 4 Building ComponentWorks Applications with Visual C++

ComponentWorks 3D Graph 4-8 © National Instruments Corporation

For example, use the following code to get the number of plots contained
in the 3D graph.

#include "cwplots3d.h"

int count = m_CWGraph3D1.GetPlots().GetCount();

Notice that you can chain this operation into one function call without
having to declare another variable.

If you need to access an object in a collection property, use the Item
method with the index of the object. Remember to include the header file
for the collection object. For example, to set the LineStyle property of the
first plot on a 3D Graph control, use the following code.

#include "cwplots3d.h"

#include "cwplot3d.h"

m_CWGraph3D1.GetPlots().Item(COleVariant(1.0)).

SetLineStyle(cwLine3DSolid);

Using Methods
Use the control wrapper classes to extract all methods of the control. To call
a method, append the method name to the member variable name and pass
the appropriate parameters. If the method does not require parameters, use
a pair of empty parentheses.

m_CWGraph3D1.ClearData();

Most methods take some parameters as variants. You must convert any such
parameter to a variant if you have not already done so. You can convert
most scalar values to variants with COleVariant() . For example, the
MajorDivisions property of the Ticks3D object requires a scalar value
as variant.

#include "cwticks3d.h"

m_CWGraph3D1.GetAxes().Item(COleVariant(1.0)).

GetTicks().SetMajorDivisions(COleVariant(10.0));

Note Consult Visual C++ documentation for more information about variant data types.

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-9 ComponentWorks 3D Graph

If you need to call a method on a sub-object of a control, follow the
conventions outlined in the Using Properties section earlier in this chapter.
For example, to call ClearData on one particular plot of the 3DGraph, use
the following lines of code.

#include "cwplots3d.h"

#include "cwplot3d.h"

m_CWGraph3D1.GetPlots().Item(COleVariant(1.0)).

ClearData();

Using Events
After placing a control on your form, you can start defining event handler
functions for the control in your code. Events generate automatically at run
time when different controls respond to conditions, such as a user
interacting with the graph on the form.

Use the following procedure to create an event handler.

1. Right click on a control and select ClassWizard.

2. Select the Message Maps tab and the desired control in the Object IDs
field. The Messages field displays the available events for the selected
control. (See Figure 4-6).

3. Select the event and press the Add Function button to add the event
handler to your code.

4. To switch directly to the source code for the event handler, click on the
Edit Code button. The cursor appears in the event handler, and you can
add the functions to call when the event occurs. You can use the Edit
Code button at any time by opening the class wizard and selecting the
event for the specific control.

Chapter 4 Building ComponentWorks Applications with Visual C++

ComponentWorks 3D Graph 4-10 © National Instruments Corporation

The following is an example of an event handler generated for the Rotate
event of the 3D Graph. Insert your own code in the event handler.

void CTestDlgDlg::OnRotateCwgraph3d1(VARIANT FAR*

NewLatitude, VARIANT FAR* NewLongitude)

{

// TODO: Add control notification handler code here

}

Figure 4-6. Event Handler

© National Instruments Corporation 5-1 ComponentWorks 3D Graph

5
Building ComponentWorks
Applications with Delphi

This chapter describes how you can use ComponentWorks with Delphi,
including inserting the controls into the Delphi environment, setting their
properties, and using their methods and events.

Note The descriptions and figures in this chapter apply specifically to the Delphi 3
environment. If you have the original release of Delphi 3, you might experience
significant problems with ActiveX controls, but Borland offers a newer version of
Delphi that corrects most of these problems. Before using ComponentWorks with
Delphi 3, contact Borland to receive the Delphi 3 patch or a newer version.

Running Delphi Examples
To run the Delphi examples installed with ComponentWorks, you need
to import the controls into the Delphi environment. See the section on
Loading ComponentWorks into the Component Palette for more
information about loading the controls.

Overview—Developing Delphi Applications
You start developing applications in Delphi using a form. A form is a
window or area on the screen on which you can place controls and
indicators to create the user interface for your programs. The Component
palette in Delphi contains all of the controls available for building
applications. After placing each control on the form, configure the
properties of the control with the default and custom property pages.
Each control you place on a form has associated code (event handler
routines) in the Delphi program that automatically executes when the
user operates the control or the control generates an event.

Chapter 5 Building ComponentWorks Applications with Delphi

ComponentWorks 3D Graph 5-2 © National Instruments Corporation

Loading ComponentWorks into the Component Palette
Before you can use the 3D Graph control in your Delphi applications, you
must add it to the Component palette in the Delphi environment. You need
to add the control to the palette only once because it remains in the
Component palette until you explicitly remove it. When you add a control
to the palette, you create a Pascal import unit (header file) that declares the
properties, methods, and events of the control. When you use the control on
a form, a reference to the import unit is automatically added to the program.

Note Before adding a new control to the Component palette, make sure to save all your
work in Delphi, including files and projects. After loading the controls, Delphi
closes any open projects and files to complete the loading process.

Use the following procedure to add ActiveX controls to the Component
palette.

1. Select Import ActiveX Control from the Component menu in the
Delphi environment. The Import ActiveX Control window displays
a list of currently registered controls.

Figure 5-1. Delphi Import ActiveX Control Dialog Box

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-3 ComponentWorks 3D Graph

2. Select National Instruments CW 3DGraph to add the 3D graph
control to the Component palette.

3. Click Install .

Delphi generates a Pascal import unit file for the selected .OCX file,
which is stored in the Delphi \Imports directory. If you have installed
the same .OCX file previously, Delphi prompts you to overwrite the
existing import unit file.

4. In the Install dialog box, click on OK to add the control to the Delphi
user’s components package.

5. In the following dialog, click on Yes to rebuild the user’s components
package with the added controls. Another dialog box acknowledges
the changes you have made to the user’s components package, and the
package editor displays the components currently installed.

At this point, you can add additional ActiveX controls with the
following procedure.

a. Click on the Add button.

b. Select the Import ActiveX tab.

c. Select the ActiveX control you want to add.

d. Click on OK .

e. After adding the ActiveX controls, compile the user’s components
package.

If your control does not appear in the list of registered controls, click the
Add button. To register a control with the operating system and add it to the
list of registered controls, browse to and select the OCX file that contains
the control. Most OCX files reside in the \Windows\System directory
(\WinNT\System32 on Windows NT).

New controls are added to the ActiveX tab in the Components palette. You
can rearrange the controls or add a new tab to the Components palette by
right clicking on the palette and selecting Properties.

Chapter 5 Building ComponentWorks Applications with Delphi

ComponentWorks 3D Graph 5-4 © National Instruments Corporation

Building the User Interface
After you add the ComponentWorks control to the Component palette, use
it in the user interface. Open a new project, and place different controls on
the form. After placing the controls on the form, configure their default
property values through the stock and custom property sheets.

Placing Controls
To place a control on the form, select the control from the Component
palette and click and drag the mouse on the form. Use the mouse to move
and resize the control to customize the interface. After you place a control,
you can change its default property values by using the default property
sheet (Object Inspector) and custom property sheets.

Using Property Pages
Set property values such as Name in the Object Inspector of Delphi. To
open the Object Inspector, select Object Inspector from the View menu or
press <F11>. Under the Properties tab of the Object Inspector, you can set
different properties of the selected control.

Figure 5-2. Delphi Object Inspector

To open the custom property pages of a control, double click on the control
or right click on the control and select Properties. You can edit most
control properties from the custom property pages.

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-5 ComponentWorks 3D Graph

The following figure shows the ComponentWorks 3D Graph control
property page.

Figure 5-3. ComponentWorks 3D Graph Control Property Pages

Programming with ComponentWorks
The code for each form in Delphi is listed in the Associated Unit (code)
window. You can toggle between the form and Associated Unit window by
pressing <F12>. After placing controls on the form, use their methods in
your code and create event handler routines to process events generated by
the controls at run time.

Chapter 5 Building ComponentWorks Applications with Delphi

ComponentWorks 3D Graph 5-6 © National Instruments Corporation

Using Your Program to Edit Properties
You can set or read control properties programmatically by referencing
the name of the control with the name of the property, as you would
any variable name in Delphi. The name of the control is set in the
Object Inspector.

The syntax for setting the Value property in Delphi is

name.property := new_value;

For example, you can change the Caption property of a 3D Graph control
using the following line of code, where CWGraph3D1 is the default name of
the control.

CWGraph3D1.Caption := "Seismic Data, Magnitude vs

Frequency (Hz) vs Time (sec)";

A property can be an object itself that has its own properties. To set
properties in this case, combine the name of the control, sub-object, and
property. For example, consider the following code for the 3D Graph
control. Plots is both a property of the 3D Graph control and an object
itself. LineStyle is a property of the CWPlot3D object. As an object of
the 3D Graph control, CWPlots3D itself has several additional properties.

CWGraph3D1.Plots.Item(1).LineStyle := cwLine3DSolid;

Note To use the properties or methods of an object in a collection, use the Item method
to extract the object from the collection. Once you extract the object, use its
properties and methods as you usually would.

You can retrieve the value of a control property from your program in the
same way. For example, you can assign the line width of a plot to a text box
on the user interface.

Edit1.Text := CWGraph3D1.Plots.Item(1).LineWidth;

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-7 ComponentWorks 3D Graph

Using Methods
Each control has defined methods that you can use in your program. To call
a method in your program, use the control name followed by the method
name.

CWGraph3D1.ClearData;

Some methods require parameters, as does the following method.

CWGraph3D1.Plot3DCurve (xVector, yVector, zVector,

wVector);

In most cases, parameters passed to a method are of variant type. Simple
scalar values can be automatically converted to variants and, therefore,
might be passed to methods. Arrays, however, must be explicitly declared
as variant arrays.

procedure TForm1.Button1Click(Sender: TObject);

var

DataIn: OleVariant;

i,j : Integer;

begin

DataIn := VarArrayCreate([0,100,0,100],varDouble);

for i:=0 to 99 do

for j:=0 to 99 do

DataIn[i,j] := i+j;

CWGraph3D1.Plot3DSimpleSurface(DataIn, DataIn);

end;

Note Delphi does not allow optional parameters to be omitted, so you must specify the
magnitude data for the Plot3DSimpleSurface method. If you specify the
magnitude to be the same as the Z data, the control behaves as if the magnitude
data was omitted.

Chapter 5 Building ComponentWorks Applications with Delphi

ComponentWorks 3D Graph 5-8 © National Instruments Corporation

Using Events
Use event handler routines in your source code to respond to and process
events generated by ComponentWorks. Events are generated by user
interaction with an object in response to internal conditions. You can create
a skeleton for an event handler routine using the Object Inspector in the
Delphi environment.

To open the Object Inspector, press <F11> or select Object Inspector from
the View menu. In the Object Inspector, select the Events tab. This tab, as
shown in the following figure, lists all events for the selected control. To
create a skeleton function in your code window, double click on the empty
field next to the event name. Delphi generates the event handler routine in
the code window using the default name for the event handler.

Figure 5-4. Delphi Object Inspector Events Tab

To specify your own event handler name, click in the empty field in the
Object Inspector next to the event, and enter the function name. After the
event handler function is created, insert the code in the event handler.

© National Instruments Corporation 6-1 ComponentWorks 3D Graph

6
Using the 3D Graph Control

This chapter describes how you can use the 3D Graph control to visualize
three-dimensional data. It also explains the individual control and its most
commonly used properties, methods, and events and includes a tutorial
with step-by-step instructions for using the control.

You can find complete reference information about the 3D Graph control
and its properties, methods, and events in the ComponentWorks 3D Graph
Online Reference, available by selecting Programs»National
Instruments ComponentWorks»3DGraph»ComponentWorks3D
Graph Reference from the Windows Start menu.

What is the 3D Graph Control?
For many real-world data sets—for example, terrain contours, the motion
of an airplane in three dimensions, the temperature distribution on a
surface, and joint time-frequency analysis—you need to visualize data in
three dimensions. With the ComponentWorks 3D Graph control, you can
visualize three-dimensional data and modify the way that data appears by
modifying graph, plot, and contour properties. The ComponentWorks 3D
Graph control is named CWGraph3D.

You can set most properties for the control through property pages as you
design your program. To better understand the potential and versatility of
the control, try experimenting with the control properties on the property
pages.

In certain cases, you might need to change the value of one or more
properties in your program code. Throughout this chapter, examples
demonstrate how to change values programmatically.

Note Although the code and examples throughout this chapter use Visual Basic syntax,
you can apply the concepts and implement the steps in any programming
environment. Remember to adjust all code to your specific programming
language.

Chapter 6 Using the 3D Graph Control

ComponentWorks 3D Graph 6-2 © National Instruments Corporation

3D Graph Object Hierarchy
The 3D Graph control is made up of a hierarchy of objects, as illustrated in
Figure 6-1, used to interact with the control programmatically.

Figure 6-1. 3D Graph Control Object Hierarchy

Graph3D Object
The Graph3D object contains the properties of the graph, such as its name
and projection styles, that are usually set in the property pages during
design time. The Graph3D object also contains other properties that
reference its objects and properties that affect the behavior of the graph.

The 3D Graph control methods are called directly on the Graph3D object.
The Plot methods are called on the Graph3D object to send data to the first
available plot. Use the Plot methods on individual Plot3D objects to send

Graph3D Control
Properties such as

Lighting, ProjectionStyle

PlotTemplate
Object

 Property: LineStyle

Axes3D Collection
Property: Count

Plots3D Collection
Property: Count

Lights Collection
Property: Count

Labels3D Object
Properties such as

Opposite, Color

ValuePairs
Collection

Property: Count

ValuePair Object
Properties:

Name, Value

Ticks3D Object
Properties such as
Inside, MajorTicks

Axis3D Object
Properties such as

AutoScale, Maximum

Plot3D Object
Properties such as
LineColor, Contours

Light Object
Properties such as
Color, Attenuation

Contours Collection
Properties such as

Anchor, Interval

Contour Object
Properties such as

LineColor, LineStyle

Chapter 6 Using the 3D Graph Control

© National Instruments Corporation 6-3 ComponentWorks 3D Graph

data to a specific plot. Use the ClearData method to clear the data in all
plots.

The 3D Graph control can visualize data as a curve or surface using the Plot
methods. A curve is comprised of a one-dimensional array of individual
points on the graph, each point having an X, Y, and Z coordinate. Those
points are then connected with a line. A curve is ideal for visualizing the
path of a moving point, such as the flight path of a bullet. The 3D Graph
control provides one method for plotting a curve—the Plot3DCurve
method.

A surface plot is comprised of a two-dimensional array of points on the
graph, each having an X, Y, and Z coordinate. Those points are then
connected, forming a three-dimensional surface view of the data. For
example, you might use a surface plot for terrain mapping. The 3D Graph
control provides three methods for plotting a surface, depending on the type
of data you have:

• Plot3DSimpleSurface—Use this method to plot one (or two) 2D
array(s) of data, where the array provides the Z data for the surface
while the indices provide the X and Y data. The optional second array
is used to specify magnitude data.

• Plot3DParametricSurface—Use this method when you have three (or
four) 2D arrays of data. The optional fourth array is used to specify
magnitude data.

• Plot3DSurface—Use this method to plot two 1D arrays and one (or
two) 2D array(s) of data, where the first two arrays provide the X and
Y data and the third array provides the Z data. The optional fourth
array is used to specify magnitude data.

Plots3D Collection
The Plots3D collection is a standard collection containing Plot3D objects.
The collection contains one property, Count , that returns the number of
Plot3D objects in the collection.

NumPlots = CWGraph3D1.Plots.Count

Usually, all plots and their properties are defined during design in the
property pages. You can use the Add, Remove, and RemoveAll methods to
programmatically change the number of plots on the graph. When you add
a plot to the collection, the new plot assumes the properties of the
PlotTemplate object (see PlotTemplate Object later in this chapter).

Chapter 6 Using the 3D Graph Control

ComponentWorks 3D Graph 6-4 © National Instruments Corporation

The Remove method requires the index of the plot you are removing.

CWGraph3D1.Plots.Add

CWGraph3D1.Plots.Remove 3

Use the Item method of the Plots3D collection to access a particular
Plot3D object in the collection.

Dim Plot1 as CWPlot3D

Set Plot1 = CWGraph3D1.Plots.Item(1)

Plot3D Object
The Plot3D object represents an individual plot on the graph. The object
contains a number of different properties that determine the display of the
plot, including LineColor , LineStyle , PointColor , and FillColor .
You can set these properties during design in the property pages and change
them programmatically.

CWGraph3D1.Plots.Item(1).LineColor = vbBlue

CWGraph3D1.Plots.Item(1).PointStyle = cwPoint3DAsterisk

Each Plot3D object has a set of Plot methods similar to those of the
Graph3D object. Calling these methods directly on the Plot3D object
allows you to update a specific plot on the graph.

Contours Collection
The Contours collection is a standard collection containing Contour
objects. The collection contains one property, Count , that returns the
number of Contour objects in the collection.

NumContours = CWGraph3D1.Contours.Count

Usually, all contours and their properties are defined during design in the
property pages. You can use the Add, Remove, and RemoveAll methods
to programmatically change the number of contours on the graph. The
Remove method requires the index of the contour you are removing.

CWGraph3D1.Contours.Add

CWGraph3D1.Contours.Remove 3

Use the Item method of the Contours collection to access a particular
Contour object in the collection.

Dim Contour1 as CWContour

Set Contour1 = CWGraph3D1.Contours.Item(1)

Chapter 6 Using the 3D Graph Control

© National Instruments Corporation 6-5 ComponentWorks 3D Graph

Contour Object
The Contour object represents an individual contour on the graph. The
object contains a number of different properties that affect its appearance,
including Level , LineColor , and LineStyle . You can set these
properties during design in the property pages and change them
programmatically.

CWGraph3D1.Contours.Item(1).LineColor = vbBlue

CWGraph3D1.Contours.Item(1).Level = 3

Lights Collection
The Lights collection is a standard collection containing exactly four Light
objects. The collection contains one property, Count , that returns the
number of Light objects in the collection.

NumPlots = CWGraph3D1.Lights.Count

Usually, all lights and their properties are defined during design in the
property pages.

Use the Item method of the Lights collection to access a particular Light
object in the collection.

Dim Light1 as CWLight

Set Light1 = CWGraph3D1.Lights.Item(1)

Light Object
The Light object represents an individual light on the graph. The object
contains a number of different properties that determine how the lights are
used, including Color , Distance , Latitude , and Longitude . You can
set these properties during design in the property pages and change them
programmatically.

CWGraph3D1.Lights.Item(1).Color = vbBlue

CWGraph3D1.Lights.Item(1).Distance = 10

Axes3D Collection
The Axes3D collection is a standard collection containing all the Axis3D
objects of the graph. A graph has one X, Y, and Z axis. These different
Axis3D objects are contained in the Axes3D collection and can be
referenced by index. The X axis is at index 1, the Y axis is at index 2, and
the Z axis is at index 3.

Chapter 6 Using the 3D Graph Control

ComponentWorks 3D Graph 6-6 © National Instruments Corporation

The Axes3D collection has the property Count , which returns the number
of Axis3D objects in the collection.

NumAxes = CWGraph3D1.Axes.Count

Usually, you define all axes and their properties at design time in the
property pages.

Use the Item method of the Axes3D collection to access a particular
Axis3D object in the collection.

Dim xAxis as CWAxis3D

Set xAxis = CWGraph3D1.Axes.Item(1)

Axis3D Object
The Axis3D object contains all properties of an individual axis on the
graph. It contains properties such as AutoScale , Maximum, and Minimum ,
that you can set and read directly.

CWGraph3D1.Axes.Item(1).AutoScale = True

MaxValue = CWGraph3D1.Axes.Item(1).Maximum

Use the SetMinMax method to specify a new minimum and a new
maximum for the axis in one function call.

CWGraph3D1.Axes.Item(1).SetMinMax newMin, newMax

The Axis3D object contains three objects—Ticks3D object, Labels3D
object, and the ValuePairs collection—described in the following sections.

Ticks3D Object
Use the Ticks3D object to specify how tick marks appear on a particular
axis. You can set properties to specify the spacing between ticks as well as
major and minor tick selection. The Ticks3D object also controls any grid
displayed for a particular axis on the graph. Usually, tick properties are set
during design though the property pages. If necessary, you can change
them at run time with simple property calls.

CWGraph3D1.Axes.Item(1).Ticks.AutoDivisions = False

CWGraph3D1.Axes.Item(1).Ticks.MinorUnitsInterval = 2.0

CWGraph3D1.Axes.Item(1).Ticks.MajorGrid = True

Chapter 6 Using the 3D Graph Control

© National Instruments Corporation 6-7 ComponentWorks 3D Graph

Labels3D Object
The Labels3D object determines how axis labels are drawn. Labels are
the numbers displayed next to the ticks. The Labels3D object properties
specify where to draw the labels (normal or opposite), the font of the
labels, and the color of the labels.

CWGraph3D1.Axes.Item(2).Labels.Color = vbBlue

CWGraph3D1.Axes.Item(2).Labels.Normal = True

ValuePairs Collection
Use the ValuePairs collection and ValuePair objects to mark specific points
on any axis with a custom label. The ValuePairs collection contains a
variable number of ValuePair objects on an axis. The Count property,
along with several other properties, define how value pairs appear
on the axis.

NumMarkers = CWGraph3D1.Axes.Item(1).ValuePairs.Count

CWGraph3D1.Axes.Item(1).ValuePairs.LabelType =

cwVPLabelName

The ValuePairs collection has an Item method, which you can use to access
a specific ValuePair in the collection, and several other methods (Add,
Remove, RemoveAll) to dynamically manipulate the collection. The
RemoveAll method deletes all objects in the collection, and the Add and
Remove methods add or remove only one value pair at a time. Specify the
index of the value pair to be deleted on the Remove method.

CWGraph3D1.Axes.Item(2).ValuePairs.RemoveAll

CWGraph3D1.Axes.Item(2).ValuePairs.Remove 2

ValuePair Object
A ValuePair object associates a symbolic name with a value and marks a
specific point on an axis. You can specify whether the value pair’s value or
the value pair’s index in the collection determines the position of the value
pair on the axis and whether the graphical representation of the value pair
on the axis is its name or value.

CWGraph3D1.Axes.Item(1).ValuePairs.Add

n = CWGraph3D1.Axes.Item(1).ValuePairs.Count

CWGraph3D1.Axes.Item(1).ValuePairs.Item(n).Name = "Max"

CWGraph3D1.Axes.Item(1).ValuePairs.Item(n).Value = 7.0

Chapter 6 Using the 3D Graph Control

ComponentWorks 3D Graph 6-8 © National Instruments Corporation

PlotTemplate Object
The PlotTemplate object is a special instance of a Plot3D object used to
specify the default property values of new plots. The PlotTemplate object
properties are identical to those of the Plot3D object and are set through the
property pages or programmatically. The PlotTemplate property values are
used as default property values for newly created plots when the Add
method is called on the Plots3D collection.

Events
The graph generates a number of different events that enable your
application to react to user interaction with the graph. The graph
automatically processes certain mouse actions such as rotating, panning,
and zooming, for which you do not need to develop any event handler
routines.

The TrackMode property, which you can set through the property pages or
programmatically, determines the type of events generated and other
automatic processing. Some common modes on the graph generate events
for mouse interaction with plots and the plot area, as well as rotating,
panning, and zooming the graph.

Rotating, Panning, and Zooming
To rotate, pan, and zoom 3D graphs in an application that is running,
you must set the TrackMode property for the graph as follows:

CWGraph3D1.TrackMode = cwG3DZoomPanRotate

Note If the CWGraph3D.Enabled property is False , all tracking and events are
disabled.

Use the following steps to rotate, zoom, and pan a 3D graph:

• To rotate the graph, press and hold the left mouse button and drag.

• To zoom on the graph, press and hold the <Alt> key and the left mouse
button while dragging the mouse forward and backward. If your mouse
has a wheel, you also can zoom on the graph by rotating the wheel.

• To pan the graph, press and hold the <Shift> key and the left mouse
button while dragging the mouse.

Chapter 6 Using the 3D Graph Control

© National Instruments Corporation 6-9 ComponentWorks 3D Graph

Tutorial: Using the 3D Graph Control
This tutorial shows you how to use the 3D Graph control in a simple
application.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment. Refer to
the Building ComponentWorks Applications chapters for information about
implementing any step in other programming environments. You also can
refer to the tutorial examples installed with ComponentWorks for
completed versions of this example in different programming
environments.

Designing the Form
1. Open a new project and form. If you are working in Visual C++, select

a dialog-based application and name your project Graph3DExample .

2. Load the ComponentWorks 3D Graph control into your programming
environment.

3. Place a ComponentWorks 3D Graph control on the form. Keep its
default name, CWGraph3D1.

4. Place a Visual Basic button (shown at left) on the form. Change the
name property of the button to PlotSurface in the default property
sheet in Visual Basic and Delphi Object Inspector or the custom
property pages in Visual C++. Likewise, change the caption property
to Plot Surface .

5. Place a second Visual Basic button on the form. Change the name and
caption properties to PlotCurve and Plot Curve .

Chapter 6 Using the 3D Graph Control

ComponentWorks 3D Graph 6-10 © National Instruments Corporation

Your form should look similar to Figure 6-2.

Figure 6-2. Graph3DExample Form

Developing the Code
Develop the code so that either a surface data or curve data is plotted on the
graph in response to pressing the appropriate buttons.

1. Define an event handler routine for the Plot Surface button to be called
when the button is pressed. In the event handler the program creates a
two-dimensional array of 20 points by 20 points and plots it on the
graph.

Generate the event handler routine for the Click event of the Plot
Surface button. Add the following code to the PlotSurface_Click
subroutine. In Visual C++, remember to generate member variables for
any controls referenced in the program.

Private Sub PlotSurface_Click()

Dim data(0 To 20, 0 To 20) As Double

For i = 0 To 20

For j = 0 To 20

data(i,j) = sin(i * 0.314)

Next j

Next i

Chapter 6 Using the 3D Graph Control

© National Instruments Corporation 6-11 ComponentWorks 3D Graph

CWGraph3D1.Plot3DSimpleSurface data

CWGraph3D1.Plots(1).Style = cwSurface

CWGraph3D1.Plots(1).ColorMapStyle = cwShaded

End Sub

This code generates a two-dimensional array of 20-by-20 numbers.
The Plot3DSimpleSurface method then replaces any data on the
plot and plots the new data. To ensure the plot is drawn as a filled
surface, the plot style is set (CWGraph3D1.Plots(1).Style =

cwSurface). To ensure that the plot is drawn with a shaded color map,
the color map style is set (CWGraph3D1.Plots(1).Style =

cwShaded). Although both values are defaults, plotting a curve
changes them.

2. Generate the event handler routine for the Click event of the Plot
Curve button, which plots a parametric curve on the graph when
pressed. The parametric curve is represented by three one-dimensional
arrays—one for each of the X, Y, and Z coordinates. Add the following
code to the PlotCurve_Click subroutine:

Private Sub PlotCurve_Click()

Dim xData(0 to 50) As Double

Dim yData(0 to 50) As Double

Dim zData(0 to 50) As Double

For i = 0 To 50

xData(i) = Sin(i/5#)

yData(i) = Cos(i/5#)

zData(i) = i

Next i

CWGraph3D1.Plot3DCurve xData, yData, zData

End Sub

3. Save the project and form as Graph3DExample .

Testing Your Program
Run and test the program. After plotting either the surface or the curve,
zoom, pan, or rotate the graph to get a feel for the data. To rotate the graph
press and hold the left mouse button and drag. To zoom on the graph, press
and hold the <Alt> key and the left mouse button while dragging the mouse
forward and backward. To pan the graph, press and hold the <Shift> key
and the left mouse button while dragging the mouse.

Plot3DSimpleSurface and Plot3DCurve are the two most common
methods for passing data to the graph. However, there are two more Plot
methods (Plot3DSurface and Plot3DParametricSurface) that
display data on the graph.

© National Instruments Corporation 7-1 ComponentWorks 3D Graph

7
Debugging Your Application

This chapter offers suggestions for debugging your applications. Although
debugging tools vary depending on the programming environment, they
normally include features such as breakpoints, step-run modes, and watch
windows.

Error Checking
The ComponentWorks 3D Graph control can report error information to
you and to the application by throwing an exception that your programming
environment handles.

Exceptions
Exceptions are error messages returned directly to your programming
environment. Usually, exceptions are processed by displaying a default
error message. The error message allows you to end your application or to
enter debug mode and perform certain debugging functions. Part of the
exception returned is an error number and error description, displayed as
part of the error message.

Figure 7-1. Visual Basic Error Message

Depending on your programming environment, you might be able to insert
code that can catch exceptions being sent to your application and handle

Chapter 7 Debugging Your Application

ComponentWorks 3D Graph 7-2 © National Instruments Corporation

them in another manner. In Visual Basic, you can do this by using the On

Error statement.

• On Error Resume Next disables automatically generated error
messages. The program continues running at the next line. To handle
an error in this mode, you should check and process the information in
the Err object in your code.

Private Sub Plot_Click(Data As Variant)

On Error Resume Next

CWGraph3D1.Plot3DSimpleSurface Data

If Err.Number <> 0 Then MsgBox "Plot Error: " +

CStr(Err.Number)

End Sub

• On Error GoTo disables automatically generated error messages and
causes program execution to continue at a specified location in the
subroutine. You can define one error handler in your subroutine.

Private Sub Plot_Click(Data As Variant)

On Error GoTo ErrorHandler

CWGraph3D1.Plot3DSimpleSurface Data

Exit Sub

ErrorHandler:

MsgBox "Plot Error: " + CStr(Err.Number)

Resume Next

End Sub

If you are not using Visual Basic, consult the documentation for your
programming environment for information about handling exceptions.

Debugging
This section outlines a number of general debugging methods that you
might use in your application development. If you experience some
unexpected behavior in your program, use these methods to locate and
correct the problem in your application.

Debug Print
One of the most common debugging methods is to print out or display
important variables throughout the program execution. You can monitor
critical values and determine when your program varies from the expected
progress. Some programming environments have dedicated debugging
windows that are used to display such information without disturbing the

Chapter 7 Debugging Your Application

© National Instruments Corporation 7-3 ComponentWorks 3D Graph

rest of the user interface. For example, you can use the Debug.Print
command in Visual Basic to print information directly to the
debug window.

Debug.Print CW3DGraph1.Enabled

Breakpoint
Most development environments include breakpoint options so you can
suspend program execution at a specific point in your code. Breakpoints are
placed on a specific line of executable code in the program to pause
program execution.

Stopping at a breakpoint confirms that your application ran to the line of
code containing the breakpoint. If you unsure whether a specific section of
code is being called, place a breakpoint in the routine to find out. Once you
have stopped at a specific section of your code, you can use other tools,
such as a watch window or debug window, to analyze or even edit variables.

In some environments, breakpoints might include conditions so program
execution halts if certain other conditions are met. These conditions usually
check program variables for specific values. Once you have completed the
work at the breakpoint, you can continue running your program, either in
the normal run mode or in some type of single-step mode.

Watch Window
Use a watch window to display the value of a variable during program
execution. You can use it to edit the value of a variable while the program
is paused. In some cases, you can display expressions, which are values
calculated dynamically from one or more program variables.

Single Step, Step Into, and Step Over
Use single stepping to execute a program one line at a time. This way, you
can check variables and the output from your program during execution.
Single stepping is commonly used after a breakpoint to slowly step through
a questionable section of code.

If you use step into, the program executes any code available for
subroutines or function calls and steps through it one line at a time. Use this
mode if you want to check the code for each function called. The step over
mode assumes that you do not want to go into the code for functions being
called and runs them as one step.

Chapter 7 Debugging Your Application

ComponentWorks 3D Graph 7-4 © National Instruments Corporation

In some cases, you might want to test a limited number of iterations of a
loop but then run the rest of the iterations without stopping again. For this
type of debugging, several environments include an option step to cursor or
run to cursor options. Under this option, you can place your cursor at a
specific point in the code, such as the first line after a loop, and run the
program to that point.

© National Instruments Corporation A-1 ComponentWorks 3D Graph

A
Distribution and
Redistributable Files

This chapter contains information about ComponentWorks redistributable
files and distributing applications that use ComponentWorks controls.

Files
The files in the \Setup\redist directory of the ComponentWorks CD
are necessary for distributing applications and programs that use
ComponentWorks controls. You need to distribute only those files needed
by the controls you are using in your application.

Distribution
When installing an application using ComponentWorks controls on
another computer, you also must install the necessary control files and
supporting libraries on the target machine. In addition to installing all
necessary OCX files on a target computer, you must register each of these
files with the operating system. This allows your application to find the
correct OCX file and create the controls.

When distributing applications with the ComponentWorks controls,
do not violate the license agreement (section 5) provided with the
ComponentWorks software. If you have any questions about the licensing
conditions, contact National Instruments.

Automatic Installers
Many programming environments include some form of a setup or
distribution kit tool. This tool automatically creates an installer for your
application so that you can easily install it on another computer. To
function successfully, this tool must recognize which control files and
supporting libraries are required by your application and include these in
the installer it creates. The resulting installer also must register the controls
on the target machine.

Appendix A Distribution and Redistributable Files

ComponentWorks 3D Graph A-2 © National Instruments Corporation

Some of these tools, such as the Visual Basic 5 Setup Wizard, use
dependency files to determine which libraries are required by an OCX file.
The ComponentWorks OCX file includes a corresponding dependency file
located in the \Windows\System directory (\WinNT\System32 for
Windows NT) after you install the ComponentWorks software.

Some setup tools might not automatically recognize which files are
required by an application but provide an option to add additional files to
the installer. In this case, verify that all necessary OCX files (corresponding
to the controls used in your application) as well as all the DLL and TLB
files from the \redist directory are included. You also should verify that
the resulting installer does not copy older versions of a file over a newer
version on the target machine.

If your programming environment does not provide a tool or wizard for
building an installer, you may use third-party tools, such as InstallShield.
Some programming environments provide simplified or trial versions of
third-party installer creation tools on their installation CDs.

Manual Installation
If your programming environment does not include a setup or distribution
kit tool, you must build your own installer and perform the installation task
manually. To install your application on another computer, follow these
steps:

1. Copy the application executable to the target machine.

2. Copy the ComponentWorks OCX file to the System directory
(\Windows\System for Windows 95/98 or \WinNT\System32 for
Windows NT) on the target machine.

3. Copy all DLL and TLB files in the \redist directory to the System
directory on the target machine.

4. Copy any other DLLs and support files required by your application to
the System directory on the target machine.

Some of these files might already be installed on the target machine. If the
file on the target machine has an earlier version number than the file in the
\redist directory, copy the newer file to the target machine.

Appendix A Distribution and Redistributable Files

© National Instruments Corporation A-3 ComponentWorks 3D Graph

After copying the files to the target machine, you must register all OCX
files with the operating system. To register an OCX file, you need a utility
such as REGSVR32.EXE. You must copy this utility to the target machine to
register the OCX files, but you can delete it after completing the
installation. Use this utility to register each OCX file with the operating
system, as in the following example.

regsvr32 c:\windows\system\cw3dgrph.ocx

ComponentWorks Evaluation
Once the ComponentWorks OCX file is installed and registered on a target
computer, your application can create the controls as necessary. You or
your customer also can use the same OCX file in any compatible
development environment as an evaluation version of the controls.
If desired, you may distribute the ComponentWorks reference files
(from the \redist directory) with your application, which provide
complete documentation of the ComponentWorks controls when used
in evaluation mode.

If you would like to use the ComponentWorks controls as a development
tool on this target machine, you must purchase another ComponentWorks
development system. Contact National Instruments to purchase additional
copies of the ComponentWorks software.

Run-Time Licenses
For each copy of your ComponentWorks-based application that
you distribute, you must have a valid run-time license. A limited number
of run-time licenses are provided with the ComponentWorks development
systems. National Instruments driver software might also provide you with
ComponentWorks run-time licenses. You can purchase additional
ComponentWorks run-time licenses from National Instruments. Consult
the license agreement (section 5) provided with the software for more
detailed information. If you have any questions about the licensing
conditions, contact National Instruments.

Appendix A Distribution and Redistributable Files

ComponentWorks 3D Graph A-4 © National Instruments Corporation

Troubleshooting
Try the following suggestions if you encounter problems after installing
your application on another computer.

The application is not able to find an OCX file or is not able to create
a control.

• The control file or one of its supporting libraries is not copied on the
computer. Verify that the correct OCX files and all their supporting
libraries are copied on the machine. If one control was built using
another, you might need multiple OCX files for one control.

• The control is not properly registered on the computer. Make sure
you run the registration utility and that it registers the control.

Controls in the application run in evaluation (demo) mode.

• The application does not contain the correct run-time license. When
developing your application, verify that the controls are running in a
fully licensed mode. Although most programming environments
include a run-time license for the controls in the executable, some
do not.

If you are developing an application in Visual C++ using SDI (single
document interface) or MDI (multiple document interface), you must
include the run-time license in the program code for each control you
create. Consult the ComponentWorks documentation, National
Instruments Knowledgebase (www.natinst.com/support) or
technical support if you are not familiar with this operation.

© National Instruments Corporation B-1 ComponentWorks 3D Graph

B
Technical Support Resources

National Instruments offers technical support through electronic, fax, and
telephone systems. The electronic services include our Web site, an FTP
site, and a fax-on-demand system. If you have a hardware or software
problem, please first try the electronic support systems. If the information
available on these systems does not answer your questions, contact one of
our technical support centers, which are staffed by applications engineers,
for support by telephone and fax. To comment on the documentation
supplied with our products, send e-mail to techpubs@natinst.com .

Web Site
The InstrumentationWeb address is http://www.natinst.com .

From this Web site you can connect to our Web sites around the world
(http://www.natinst.com/niglobal/) and access technical support
(http://www.natinst.com/support/).

FTP Site
To access our FTP site, log in to our Internet host, ftp.natinst.com ,
asanonymous and use your e-mail address, such as
yourname@anywhere.com , as your password. The support files and
documents are located in the \support directories.

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a
library of documents in English on a wide range of technical information.
You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support
You can submit technical support questions to the applications engineering
team through e-mail at support@natinst.com . Remember to include
your name, address, and phone number so we can contact you with
solutions and suggestions.

ComponentWorks 3D Graph B-2 © National Instruments Corporation

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the
following list to find the technical support number for your country. If there
is no National Instruments office in your country, contact the source from
which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277

Austria 0662 45 79 90 0 0662 45 79 90 19

Belgium 02 757 00 20 02 757 03 11

Brazil 011 284 5011 011 288 8528

Canada (Ontario) 905 785 0085 905 785 0086

Canada (Québec) 514 694 8521 514 694 4399

Denmark 45 76 26 00 45 76 26 02

Finland 09 725 725 11 09 725 725 55

France 0 1 48 14 24 24 0 1 48 14 24 14

Germany 089 741 31 30 089 714 60 35

Hong Kong 2645 3186 2686 8505

India 91805275406 91805275410

Israel 03 6120092 03 6120095

Italy 02 413091 02 4139215

Japan 03 5472 2970 03 5472 2977

Korea 02 596 7456 02 596 7455

Mexico (D.F.) 5 280 7625 5 520 3282

Mexico (Monterrey) 8 357 7695 8 365 8543

Netherlands 0348 433466 0348 430673

Norway 32 84 84 00 32 84 86 00

Singapore 2265886 2265887

Spain (Madrid) 91 640 0085 91 640 0533

Spain (Barcelona) 93 582 0251 93 582 4370

Sweden 08 587 895 00 08 730 43 70

Switzerland 056 200 51 51 056 200 51 55

Taiwan 02 2377 1200 02 2737 4644

United Kingdom 01635 523545 01635 523154

United States 512 795 8248 512 794 5678

© National Instruments Corporation G-1 ComponentWorks 3D Graph

Glossary

Prefix Meaning Value

p- pico- 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

Numbers/Symbols

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

A

ActiveX Set of Microsoft technologies for reusable software components. Formerly
called OLE.

ActiveX control Standard software tool that adds additional functionality to any compatible
ActiveX container. The DAQ, UI, and analysis tools in ComponentWorks
are all ActiveX controls. An ActiveX control has properties, methods,
objects, and events.

Glossary

ComponentWorks 3D Graph G-2 © National Instruments Corporation

C

callback (function) A user-defined function that is called in response to an event from an object.
Also called an event handler.

Collection A collection is a control property and object that contains a number of
objects of the same type, such as axes and plots. The type name of the
collection is the plural of the type name of the object in the collection. For
example, a collection of CWAxis3D objects is called CWAxes3D. To
reference an object in the collection, you must specify the object as part of
the collection, usually by index. For example, CWGraph3D.Axes.Item(2)
is the second axis in the CWAxes3D collection of a graph.

column-major order A way to organize the data in a 2D array by columns.

D

Delphi Borland Delphi programming environment.

DLL Dynamic link library.

E

event An object generates an event in response to some action or change in state,
such as a mouse click. The event calls an event handler (callback function),
which processes the event. Events are defined as part of an OLE control
object.

event handler See event.

exception An error message generated by a control, sent directly to the application or
programming environment containing the control.

F

File I/O Saving and loading data to and from files in an application.

fires Occurs. An event fires in response to predefined conditions, such as a
mouse click on the CWGraph3D.

Glossary

© National Instruments Corporation G-3 ComponentWorks 3D Graph

form A window or area on the screen on which you place controls and indicators
to create the user interface for your program.

Format A flexible specification that defines how a number is displayed on an axis,
contour, or some other display. The specification is a format string for
formatting all values on a specific display. You specify the format string in
the property sheet of a control.

G

GUI Graphical user interface.

M

MB megabytes of memory.

method A function that performs a specific action on or with an object. The
operation of the method often depends on the values of the object’s
properties.

O

object A software tool for accomplishing tasks in different programming
environments. An object can have properties, methods, and events. You
change an object’s state by changing the values of its properties. An object's
behavior consists of the operations (methods) that can be performed on it
and the accompanying state changes. See property, method, event.

Object Browser A dialog window that displays the available properties and methods for
the controls that are loaded. The object browser shows the hierarchy
within a group of objects. To activate the object browser in Visual Basic,
press <F2>.

OCX OLE Control eXtension. Another name for ActiveX controls, reflected by
the .OCX file extension of ActiveX control files.

OLE Object linking and embedding. See ActiveX.

OLE control See ActiveX control.

Glossary

ComponentWorks 3D Graph G-4 © National Instruments Corporation

P

Plot A CWGraph3D group of methods that displays a new set of data while
deleting any previous data on the graph. A plot also refers to one of the
curves or surfaces on a graph representing the data in a 1D or 2D array of
points. Each plot on the graph has its own properties, such as color, style,
and so on.

property An attribute that controls the appearance or behavior of an object. The
property can be a specific value or another object with its own properties
and methods. For example, a value property is the color (property) of a plot
(object), while an object property is a Y axis (property) on a graph (object).
The Y axis itself is another object with properties, such as minimum and
maximum values.

R

reference A link to an external code source in Visual Basic. References are anything
that add additional code to your program, such as OLE controls, DLLs,
objects, and type libraries. You can add references by selecting the
Tools»References menu.

row-major order A way to organize the data in a 2D array by rows.

S

syntax The set of rules to which statements must conform in a particular
programming language.

U

UI User Interface.

Glossary

© National Instruments Corporation G-5 ComponentWorks 3D Graph

V

Value Pairs Pair that consists of a name and a value that you can use for custom ticks,
labels, and grid lines on the axis of a graph.

VB Microsoft Visual Basic.

VC++ Microsoft Visual C++.

	Getting Results with the ComponentWorks™ 3D�Graph
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions Used in This Manual
	Related Documentation

	Chapter 1 Introduction to the ComponentWorks 3D Graph
	What Is ComponentWorks?
	System Requirements
	Installing ComponentWorks
	Installed Files

	About the ComponentWorks Controls
	Properties, Methods, and Events
	Object Hierarchy
	Collection Objects

	Setting the Properties of an ActiveX Control
	Using Property Pages
	Changing Properties Programmatically
	Item Method
	Working with Control Methods
	Developing Event Handler Routines

	Learning the Properties, Methods, and Events

	Chapter 2 Getting Started with ComponentWorks
	Explore the ComponentWorks Documentation
	Accessing the Online Reference
	Finding Specific Information

	Become Familiar with the Examples Structure
	Develop Your Application
	Seek Information from Additional Sources

	Chapter 3 Building ComponentWorks Applications with Visual Basic
	Overview—Developing Visual Basic Applications
	Loading ComponentWorks Controls into the Toolbox
	Building the User Interface Using ComponentWorks
	Using Property Pages
	Using Your Program to Edit Properties

	Working with Control Methods
	Developing Control Event Routines
	Using the Object Browser to Build Code in Visual Basic
	Pasting Code into Your Program
	Adding Code Using Visual Basic Code Completion

	Chapter 4 Building ComponentWorks Applications with Visual C++
	Overview—Developing Visual C++ Applications
	Creating Your Application
	Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
	Building the User Interface Using ComponentWorks
	Programming with the ComponentWorks Controls
	Using Properties
	Using Methods
	Using Events

	Chapter 5 Building ComponentWorks Applications with Delphi
	Running Delphi Examples
	Overview—Developing Delphi Applications
	Loading ComponentWorks into the Component Palette
	Building the User Interface
	Placing Controls
	Using Property Pages

	Programming with ComponentWorks
	Using Your Program to Edit Properties
	Using Methods
	Using Events

	Chapter 6 Using the 3D Graph Control
	What is the 3D Graph Control?
	3D Graph Object Hierarchy
	Graph3D Object
	Plots3D Collection
	Plot3D Object

	Contours Collection
	Contour Object

	Lights Collection
	Light Object

	Axes3D Collection
	Axis3D Object
	Ticks3D Object
	Labels3D Object
	ValuePairs Collection

	PlotTemplate Object
	Events
	Rotating, Panning, and Zooming

	Tutorial: Using the 3D Graph Control
	Designing the Form
	Developing the Code
	Testing Your Program

	Chapter 7 Debugging Your Application
	Error Checking
	Exceptions
	Debugging
	Debug Print
	Breakpoint
	Watch Window
	Single Step, Step Into, and Step Over

	Appendix A Distribution and Redistributable Files
	Files
	Distribution
	Automatic Installers
	Manual Installation

	ComponentWorks Evaluation
	Run-Time Licenses
	Troubleshooting

	Appendix B Technical Support Resources
	Glossary
	Numbers/Symbols
	A
	C-F
	G-O
	P-U
	V

	Figures
	Figure 1-1. 3D Graph Control Object Hierarchy
	Figure 1-2. Visual Basic Default Property Sheets
	Figure 1-3. ComponentWorks Custom Property Pages
	Figure 3-1. Visual Basic Property Page
	Figure 3-2. ComponentWorks Custom Property Pages
	Figure 3-3. Selecting Events in the Code Window
	Figure 3-4. Viewing CWGraph3D in the Object Browser
	Figure 3-5. Browsing CWGraph3D Objects in the Object Browser
	Figure 3-6. Visual Basic 5 Code Completion
	Figure 4-1. New Dialog Box
	Figure 4-2. MFC AppWizard— Step 1
	Figure 4-3. CWGraph3D Control Property Sheets
	Figure 4-4. MFC ClassWizard—Member Variable Tab
	Figure 4-5. Viewing Property Functions and Methods in the Workspace Window
	Figure 4-6. Event Handler
	Figure 5-1. Delphi Import ActiveX Control Dialog Box
	Figure 5-2. Delphi Object Inspector
	Figure 5-3. ComponentWorks 3D Graph Control Property Pages
	Figure 5-4. Delphi Object Inspector Events Tab
	Figure 6-1. 3D Graph Control Object Hierarchy
	Figure 6-2. Graph3DExample Form
	Figure 7-1. Visual Basic Error Message

	Table
	Table 2-1. Chapters about Specific Programming Environments

